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I. INTRODUCTION

Recent reports on the extent of secondary electron contributions in

electron/photon stimulated desorption (ESD/PSD) appear to be contradictory.

Jaeger et al. (1) suggested that secondary electrons provided the dominant

contribution to the H+ yield from 3tt3/Ri and called the process x-ray induced ESD

(XESD). Others have concluded that the XESD process is the dominant mechanism in

the PSD of N+ and 0+ ions from mixed condensed gases such as N2-02 (2) and io the

PSD of H+ ions from H2 /YbOx-Sm (3). On the other hand, large differences were

found between the secondary electron yield and the PSD 0+ yield from O/Cr

providing strong evidence for the domination of a direct photon excitation

mechanism (4). A similar conclusion was reached for the PSD of K+ ions from

OH/Ti, Cr, and Cu (5). Finally, a comparison of the ESD 0+ yield from 3O/Pt

(110), originating from molecularly adsorbed NO, revealed that the 0+ yield begins

only at the 0 K level and indicates that only a direct core level process Is

active (6).
'in.m

One can make attempts to explain some of these apparently conflicting

reports. The evidence cited above claiming a dominant XESD role could possibly be

explained by other mechanisms (e.g., resonant hole delocalization (6) in 32/02).

The apparent absence of the XESD mechanism in other systems might be explained by

the low core levels studied In some of these systems. For example, the TI, Cr,

and Cu 3p core levels studied above have binding energies of only 30 to 80 eV

compared to the deeper N and 0 K levels around 400-550 eV. Regardless of the

explanation, the actual magnitude of the secondary electron contribution in the

ESD/PSD process is clearly not known.

Qualitative estimates of the secondary electron contributions to the

desorption yield can be made. If a valence excitation mechanism provides a large

desorption cross section, one expects to see secondary electrons play a signifi-

. .
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cant role at deeper core level energies. One also expects that system$ with very

low desorption thresholds should exhihit large secondary desorption yields due to

the large number of secondary electrons at very low energy. Thus neutral or

negative ion desorption yields, which reveal lower desorption thresholds than

positive ions, should exhibit even larger secondary electron effects.

In this work we examine the secondary electron contributions to the excited

OH neutral (0 1C) yield from TiO 2 as recently reported by Bermudez and Roffbauer

(7). This ESD desorption yield has a sharp threshold at It eV relative to the

Fermi level. We report the first attempt at quantitatively determining the

secondary electron contribution by deconvoluting the backscattered electron

spectrum from the measured ESD OH yield. The deconvoluted spectrum allows for

semi-quantitative interpretation of the ESD spectrum and thus provides for a

determination of the various mechanisms involved in the excited neutral desorption

process. A detailed interpretation of the ESD OH yield from TiO2 is reported

elsewhere (8). In See. 2 we describe the details of our procedure for obtaining a

backscattered spectrum as a function of primary energy. Results and a discussion

are presented in See. 3.

2. THE BACiSCATTERED SPECTRUM

The procedure for subatraction or deconvolution of electron energy loss

effects from an Auger or photoelectron lineshape is well known (9). The

expression,

R(E) - L(Pp,c )Nt(c )dc, (1)

mathematically describes this relationship between N(E), the experimentally

measured spectrum, and Nt(E), the "true" or undistorted spectrum. The 'response'

function, L(Ep,c), is usually obtained fro* the backscattered or loss spectrum

2
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where the primary energy Ep is chosen to be near the principal peak of the

spectrum N(E). The deconvolution in Auger spectroscopy has nonmally been

accompltshed using the van Cittert Iteration procedure, although Fourier analysis

techniqites have also been used (9).

The loss spectrum, L(Epsc), can be characterized as having true secondary,

SEC(Ep,e), redistributed primary, RP(P pc), and elastically scattered, ES(Ep),

contributions,

L(Epr) " A(Ep)SEC(Ep,c) + 5(Ep)RP(Ep,c) + ES(Ep) (2)

Expressions for SEC and RP have been derived previously from theoretical analysts

of the secondary cascade process and the Sethe expression for electron scattering

(9), " -

SEC(Ep,) - C/! (E+E)(c#)ml (3)

RF(Ep,-0 - 1n[(?~p-r-)/Ebl/| (Ep-)/Zb in  (4)

The expression for SEC to essentially the Sickafus (10) expression (c +

multipled by an escape factor (c/(c + Eo)), where # and Eo are the work function

and the escape probability parameters respectively. Here E. was chosed (9) to be

0.5. In RP, Ep and Eb are the primary electron beam energy and the effective

binding energy of the valence band. The expressions for SEC and RP of course do

not reproduce any structure arising from Auger and characteristic energy losses;

thus, they approximate only the overall envelope of L(Epc). ES is generally

Gaussian In shape, the width determined by the resolution of the electron

analyzer. A(E.) and N(Ep) are coefficients which depend on primary energy and

relate the size of the secondary and redistributed primary contributions relative

to the elastically scattered peak.

With the differences noted below, Eq. (1) also describes the relationiship

between the measured and "true" ESD yield. However, two factors make the ZSD

situation significantly more difficult than in the Auger case. First, the Auger

3
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electron energies are usually well above 50 eV, in which case, one can ignore

SEC as well as the variation in B(Ep) so that L(Ep,E) can be approximated as

BIRP(Ep-c)I. Second, Nt(E) should theoretically go to zero well below the main

Auger features, so B is usually determined consistent with this criterion (9).

The ESD OH* yield has a threshold at 11 eV and its behavior at higher energies, in

the absence of contributions from secondaries, is not generally known. Thus,

knowledge of SEC(Ep,c), A(Ep) imd B(Ep) Is required.

The proper choice of A and B is complicated by the nature of the ESD process

itself. Desorption may arise from both the incoming electrons, having total

current Ip, as well as from the outgoing electrons as they travel through the

outer surface layer, where all desorption is assumed to originate. This is in

contrast to the Auger lineshape where the entire signal results from escaping

electrons. Thus the appropriate choice for A and B cannot be determined directly

from the experimentally measured backscattered spectrum, but rather must be

related to the total yield,

6(F P) - l.(Fp., )/Ip(Ep)|1dr, (5) .:

and the ratio of total secondaries to redistributed primaries,
Ep Ep

R(Ep)- A(EP)I SEC(Epc)dc/(5(EP)o R?(IpLldaI. (6)"
0 q 0 W d .(

Ko.owledge of R and 6 allows A and B to be calculated.

The measurement of 6 is usually accomplished by collecting all of the

backscattered electrons over all angles and energies (I[). As an alternate

procedure (12), adequate at higher energies (e.g., E . 50 to 1O0 eV), one can

measure the current through an electrometer to ground when the sample is biased to

a relatively large positive voltage, V0 (e.g., Vo - +300 V1)C) and when the sample

lb biased slightly negative (e.g., V - -6 VDC). S can then be calculated from

the expressio,.

4
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- (1(V0) - I(v1))/I(Vo), (7) .""

which assumes that 1(Vo) equals Ip and I(V o ) - I(V 1 ) equals the total

backscattered spectrum. Eq. (7) thus assumes that the backscattered electron

yield above the energy eV. is negligible (i.e., that the secondary electron

contribution is much larger than the redistributed primary and elastically

scattered contribution, which of course is valid only at higher energies).

Our need for R as well as 6 suggested a third procedure for measuring 6. We

recorded the backscattered spectrum from OH/T1n 2 (prepared exactly as In the ESD

experiments (7)) at 15 values of Ep (50 to 200 eV at 10 eV intervals) using a

single-pass cylindrical mirror analyzer (CHA) equipped with a "Spiraltron"

electron multiplier (Bendix 4219). Spectra were recorded in both the dZN(E)I/dE"

mode, using lock-In detection with 1p -0.3-1.22 pA, and the EN(E) node usingp

pulse-counting with Ip -1-8 nA. A correction for the dependence of the detector

gain on energy was applied to the data using the results of Arnoldy at al. (13)

assuming electron impact on the front-end cone of the multiplier. Integration of

the spectrum allows 6 to be calculated from Eq. #5). 1p was determined as above

(i.e., Ip . l(Vo)) and 6 was normalized so that the maximum value (6 max), which

occurred at -200 eV, was equal to that measured directly as in Eq. (7), Smax -1.2.

The normalization is required since, of course, the CHA collects only a fraction

of the total scattered electrons (i.e., only those entering the narrow acceptance

angle of the CMA). This procedure is valid provided the backscattered spectrum is

reasonably isotropic. One advantage of this procedure is that it eliminates the

problem at low energies inherent in Eq. (7), where I(Vo ) and I(VI) are both

small.

It Is considerably more difficult to determine R, and to our knowledge no

reports of R appear In the literature. We separated the SEC and RP contributions

by fitting the expressions in Eqs. (3) and (4) to the total loss spectrum measured

5
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at 180 eV. Differences between the fit and the experimental spectrum vere then

added to one or the other contributions (e.g., Auger structure around 20 eV vas

added to the SEC contribution and the characteristic loss structure around AE -30

eV as added to RP). The resultant contributions are shown in Fig. (1). The

S V. separation into SEC and RP at lower energies was accomplished by fitting the

separated contributions at 180 eV to the measured spectrum as suggested by Eq.

(2). The RP contribution was moved along the energy scale in each case since it

depends on Ep - c; the SEC contribution was not moved In energy. Fig. (1)

illustrates at 80 and 140 eV the remarkably good fits which were achieved

throughout the energy range 50-170 eV.

Data below 50 eV could not be obtained for either 6 or R because of focussing

problems and a decreasing gun current. In order to assist us in an extrapolation

down to 11 eV, we made use of some backscattered spectra below 50 eV found for 1gO.

(14). In fact, to the best of our knowledge these are the only yield and loss

spectral data below 50 eV available for any material. The MgO data below 30 eV

were taken with a LEFD syatem; thus, all backscattered electrons were collected

for the determination of 6 (15). Fig. (2) shows the yield curve obtained below 30

eV from an epitaxial MgO layer on Mo. These data are compared with 5 obtained

from Eq. (7) above 50 eV from a similar NgO/Mo sample, and with 8*4.5 obcained by

Integra-tion of L(Ep,c) from OH/TiO2 as described above. The factor of 4.5 simply

accounts for the higher yield of NgO, but the variation with energy is

surprisingly similar. A comparison is shown of the experimental curves with a

-universal" curve fit

." e25max(Ep/Emax)expI-2(Ep/Emax)l/2I (8)

proposed by Sternglass (11,16) to represent the yield function with Esp. Clearly

Eq. (8) overestimates 6 below E.ma x  The structure In 5 below 30 eV apparently

arises from diffraction (15).

6
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Results for 6 and R are shown In Fig. (3). Those above 50 eV are obtained

from Oit/TIn 2 ; those below 50 ev are extrapolated using the behavior of the gO/No "

data as a golde. The backscattered data from ltgO/lo shows that R gets very large

as Ep approaches zero. This may simply be due to our choice of division into SEC

and RP, which becomes rather arbitrary at very low energies. Some structure may

be indicated In R around 100 eV, but we have drawn the best smooth curve through ..

the points. Any structure would not be critical in the deconvolution process, and

the smooth curve allows us to extrapolate to lower energy consistent with the

MgOIMo data. These R and 6 curves were utilized along with Eqs. (1) and (2) to

deconvolute the ESD OH* yield data from OH/TIO 2. Since the resolution of the ESD

spectra Is limited only by the thermal energy spread of the electron sun (-0.5

eV), the experimental ES was replaced by a gaussian of 0.5 eV width but with the

same area.

3. RESULTS AND DISCUSSION

DeconvolutIon of the measured ESD ON1* yield, as shown In Fig. (4), Indicates

that the yield Intensity above 50 eV Is not due entirely to backscattered .%

electrons. This Indicates that a direct nonresonant excitation Is partly

responsible for the intensity above 50 eV. A detailed comparison, reported

elsewhere (8), of the OH+ and e~ yields (17) reveals that the OeW yield reflects

primarily the nonresonant cross section. Fig. (6) indicates that the OT yield

results from both resonant and nonresonant excitations.

Secondary electrons may of course produce desorption via both the resonant

and nonresonant mechanisms. However, the resonant portion has a finite width with

some structure; thus, the secondary electron contributions may more visibly

distort the resonant portion than the nonresonant portion. The latter is

relatively smooth and extends indefinitely to higher energy. Thus we substracted

the experimental Oil+ yield shown in Fig. (5) (it reflects the nonresonant portion

7
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withl its secondary electron contributions) from the 00 yield, leaving the

resonant portion with its secondary electron contribution (the latter is also

shown in Fig. (5)). In this subtraction procedure, the relative OH* and OR+

intensities are fixed so that the deconvoluted resonant portion goes to zero at

higher energies as one would expect for a resonant excitation.

Comparison of the resonant OH* yield with the total 0- yield from O/Mo and

O/W (18) reveals some similarity in the spectra. This suggests that the

0- desorption yield results predominantly from resonant excitations and that the

resonant excitations are similar for O/Ko or W and for OH/TIO 2.

Specific electron assignments to the various peaks have been suggested and

reported elsewhere (8). Briefly, the three features around 17, 25 and 35 eV In

the 011" yield are believed to result from totally resonant electron attachment,
i.e. 3a-1

1 3d*2 a 1 3d*v* and 3al-lv*2 excitations, where 3d* and v* are

antibonding orbitals or resonances in the conduction band and 3a[ is a o bonding

OH orbital (19). The corresponding features in the 0- yields arise from similar

excitations out of the 0 2 p orbitals. The intensity around 50 eV is believed to -

arise from a resonant electron attachment 3p-v*4al followed by an Auger decay to

the v 2 v*4al configuration, which initiates the desorption. The 3p corA levels of

Ti, Mo, and W all fall around 35 eV (20,21). The direct nonresonant OR* yield

apparently arises from a nonresonant 3p-1 core excitation or ionization plus

shakeup. A 2 hole-I electron final state in either case can initiate the OH*

desorpt ion.

In conclusion, this work has shown a significant secondary electron

contribution to the ESD OH* yield. More importantly, the results indicate that

the yield above 50 eV Is not due entirely to secondary electrons. Rather a

significant yield also arises from a direct nonresonant excitation in apparent

contrast to the 0- yield from O/Ho and W. Deconvolution of the resonant portion """

enables semi-quantitative interpretation of the spectrum (8).

8
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Figure capt ions

1. Comparison of the measured backscatteced spectrum for Ofl/TiO2 at primary

energy E~ p 140 eV (top) and 80 eV (bottoma) to the best fit of Eq. (2). In Eq.

(2). SEC(c) and RP(Ep,c) were obtained from the Ep - 180 eV backscatteced spectrum

where the separation into SEC and RP is described in the text.

2. Top: The measured total electron yield from a 35 A epitaxial HgO file on No

as reported In refsa. 12 and 15. The 6 below 30 eV was obtained by collecting the

total backscattered current; that above 30 eV was measured utilizing Eq. (7).

Also shown Is 6*4.5 obtained in thi work for OBITiO2 by integrating L(Ep,c) and

normalizing as described In the text. The dashed line is a fit of Eq. (8) to the

total HgO/lHo yield.

Bottom: Comparison of the "universal curve" with experiment over a broad

energy range.%

3. Plot of R and 6 as defined In Eqs. (5) and (6) respectively and determined as

described In the text. -

4.. Comparison of the measured ESD Oil* yield for ORi/TiO 2 with the deconvoluted OH
yield.

S. Top: Comparison of the ESD OH* yield for ON/T102 (ref. 7)) with the OH1+ yield ~

(ref. 16)). The resonant Oil* yield, as obtained by subtraction of the above two

curves, and the deconsoluted resonant 011* are also shown.

Bot tom: The ESD 0- yield from 0/W and 0/Ho as reported by Liu and Lichtman

(ref. 18) is compared with the resonant OH* yield from Fig. 4.
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